Site menu:

Computerbasierte Mathematikförderung mit den "Rechenspielen mit Elfe und Mathis I" - Vorstellung und Evaluation eines Computerprogramms für Erst- bis Drittklässler



Artikel erschienen unter:
Lenhard, A., Lenhard, W., Schug, M. & Kowalski, A. (2011). Computerbasierte Mathematikförderung mit den "Rechenspielen mit Elfe und Mathis I" - Vorstellung und Evaluation eines Computerprogramms für Erst- bis Drittklässler. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 43, 79-88.



Zusammenfassung:
"Rechenspiele mit Elfe und Mathis I" (W. Lenhard & A. Lenhard, 2010) ist ein computerbasiertes Mathematik-Trainingsprogramm für die erste bis dritte Grundschulklasse, das sich an den nationalen Bildungsstandards der Kultusministerkonferenz orientiert und zahlreichen lernpsychologischen Prinzipien folgt. 87 Schüler der ersten und zweiten Klassenstufe führten das Trainingsprogramm über einen Zeitraum von zehn Wochen durch. Dabei wurde jeweils eine Schulstunde in Mathematik pro Woche durch eine Trainingssitzung mit dem Computerprogramm ersetzt, bei der die Kinder in Kleingruppen arbeiteten. Die 116 Schüler der Kontrollgruppe erhielten in der gleichen Zeit regulären Mathematikunterricht. Nach einem Matching der Ausgangsleistung zeigte sich in der Experimentalgruppe in beiden Klassenstufen im Vergleich zur Kontrollgruppe ein signifikant größerer Lernfortschritt bei einer Effektstärke von d = .59 (1. Klasse) bzw. d = .62 (2. Klasse). Eine nutzbringende Anreicherung konventionellen Mathematikunterrichts durch die Rechenspiele erscheint folglich möglich.

Abstract:
"Rechenspiele mit Elfe und Mathis I" [Math Games with Elfe and Mathis I] (W. Lenhard & A. Lenhard, 2010) is a computer based mathematical training for the application in elementary school which follows the national educational standards and accounts for multiple learning principles. 87 students from first and second grade participated during a 10 week period with one training session per week instead of regular math instruction. The 116 students in the control condition attended regular math lessons, and the invested learning time was kept constant between the two groups. After a matching of the initial math performance the increase in mathematical competence was significantly higher in the experimental group compared to the control group with an effect size of d = .59 (grade 1) respectively d = .62 (grade 2). The results show that the program can be used effectively to enrich conventional math instruction.

Schlagwörter: Mathematik, computerunterstützter Unterricht, Arithmetik, Training



Mathematik ist ein Unterrichtsfach, an dem sich wohl wie an keinem anderen die Geister scheiden: Mathematik liebt man, oder man verzweifelt daran. Das Beherrschen des aktuellen Stoffs stellt in der Mathematik in der Regel stärker als in anderen Fächern eine notwendige Voraussetzung für den Erwerb weiterer Fertigkeiten dar. Kinder, die beispielsweise aufgrund ungenügender mathematischer Basisfertigkeiten oder fehlender Automatisierung einmal in Rückstand geraten sind, erleben dieses Fach deshalb vermutlich sukzessive stärker als unüberwindbares Hindernis (Stern, 2003). Als Folge davon steigt auch die Unlust, sich mit dem Fach weiterhin zu beschäftigen.


Chancen des Einsatzes computerbasierter Förderung

Die besondere Anforderung an eine geeignete Wissensvermittlung im Fach Mathematik besteht deshalb sowohl in der ausreichenden Berücksichtigung des aktuellen Leistungsstandes des Kindes als auch in der Überwindung motivationaler Probleme, um eine ausreichend intensive Beschäftigung mit den fachlichen Inhalten zu ermöglichen. Die Zuhilfenahme geeigneter Computerförderprogramme scheint uns aus verschiedenen Gründen eine Lösung für beide Aspekte zu bieten.

Das erste wichtige Argument für die Verwendung computerbasierter Förderprogramme liegt in ihrer Adaptivität, d.h. im Idealfall passen sie sich hinsichtlich Zeitbedarf und Schwierigkeitsgrad dem Leistungsniveau des Kindes an (vgl. Kullik, 2004). Diese Individualisierung wird im regulären Lehrbetrieb an Schulen nur selten verwirklicht, da in einer Schulklasse normalerweise mit einem bestimmten Tempo und Schwierigkeitsgrad fortgeschritten wird. Schlechte Schüler werden hier also gegebenenfalls überfordert, gute Schüler unterfordert.

Zweitens stellt der Computer im Allgemeinen für Schüler ein überaus attraktives Lernmedium dar (vgl. C.-L. C. Kulik & J. A. Kulik, 1991; Leutner, 2006, S. 599; Schoppek & Tulis, 2010; Woolfolk, 2008, S. 728). Dies liegt zum einen daran, dass Computerprogramme besonders kindgerecht gestaltet werden können. Zum anderen sind Computer häufig eher mit Spielen als mit Lernen assoziiert, sodass computerbasierte Förderung als spielerische Abwechslung zum alltäglichen Lernbetrieb erlebt wird. Vor allem in den niedrigeren Klassen zeigt sich beim Arbeiten mit dem Computer außerdem oft noch ein Neuigkeitseffekt.

Außer diesen zwei wichtigen Aspekten bietet der Computer noch weitere Vorteile, die Lernen begünstigen. Computerprogramme können beispielsweise nach jeder Aufgabenbearbeitung sofort Rückmeldung darüber geben, ob die Aufgabe richtig bewältigt wurde oder nicht. In zahlreichen empirischen Arbeiten wurde bestätigt, dass die zeitliche Nähe von Rückmeldung eine zentrale Voraussetzung für Wissenserwerb darstellt (z. B. Bangert-Downs, Kulik, Kulik & Morgan, 1991; Platt, 1973; siehe auch Krajewski & Ennemoser, 2010, S. 354f). Gerade hier bietet die Schule aber in der Regel nur suboptimale Bedingungen. So erscheint beispielsweise der Lerngewinn durch eine Hausaufgabe, die in der einen Woche gestellt, aber erst in der nächsten Woche korrigiert wird, eher fraglich.

Ein letzter, hier angeführter Vorteil des Mediums Computer eröffnet sich speziell im Hinblick auf leistungsschwache Schüler, die aufgrund wiederholter Misserfolgserlebnisse dem Unterricht bzw. dem Lehrer gegenüber ängstlich eingestellt sind. Solche negativen Emotionen können die kognitive Leistungs- und Lernfähigkeit stark vermindern (z. B. Ashcraft & Faust, 1994; Helmke & Weinert, 1997; Schnabel, 1998). Der Computer ist hingegen ein emotional neutrales Medium: Er ahndet Misserfolge in der Regel höchstens mit kleinen akustischen Signalen. Am Computer kann deshalb angstfrei - wenn auch nicht immer ärgerfrei - gelernt werden.


Effektivität computerbasierter Mathematikförderung

Anders als in Deutschland sind im anglo-amerikanischen Raum umfassende Evaluationen mathematischer Lernprogramme verfügbar. Slavin und Lake (2008) berichten von 38 experimentellen oder quasi-experimentellen Evaluationsstudien, Li und Ma (2010) führen 46 verschiedene Primärstudien auf. Der Median der Effektstärke liegt laut Slavin und Lake (2008) bei d = .22, Li und Ma (2010) beziffern die gewichtete Effektstärke auf d = .28 mit durchweg positiven Effekten in allen Primärstudien. Computerunterstützter Mathematikunterricht scheint folglich tendenziell besser abzuschneiden als herkömmlicher Unterricht (siehe auch Leutner, 2006, S. 599).

Demgegenüber gestaltet sich die Situation in Deutschland grundlegend anders: Obwohl der Computer als Lernwerkzeug vielseitige und effektive Möglichkeiten zur binnendifferenzierenden Förderung im Klassenverband eröffnet (Jürgen, Glöer & Wellen, 1999), ist Deutschland der Staat der OECD, in dem der Computer am seltensten im Unterricht eingesetzt wird (Prenzel et al. 2007). Ein Grund hierfür liegt unter anderem möglicherweise darin, dass zwar eine Fülle an mathematischer Lernsoftware auf dem Markt verfügbar ist, aber wissenschaftliche Effektivitätsnachweise in der Regel fehlen. So ergibt beispielsweise die Suchanfrage nach mathematischer Lernsoftware auf Amazon.de (Stand Juni 2010) über 40 verschiedene Produkte alleine für die ersten beiden Schulklassen. Bei der Recherche nach evaluierter Mathematiksoftware fanden wir hingegen nur sechs im Unterricht anwendbare und zumindest minimal evaluierte deutschsprachige Programme. Das Programm Number Race (Wilson et al., 2006) wurde für die Therapie von Kindern mit Dyskalkulie konzipiert und an einer klinischen Stichprobe ohne Kontrollgruppe evaluiert. Euro-Mulli und Euro-Divi wurden in den 90er Jahren von Kullik und Jardon entwickelt (Kullik, 2007) und trainieren die schriftliche Multiplikation und Division. Kullik (2004) berichtet von einer Evaluation der Programme, ohne dass genauere Ergebnisse verfügbar sind. Auch gelang es uns nicht, lauffähige Versionen der Programme zu finden. Blitzrechnen - Kopfrechnen 1 + 2 und 3 +4 (Wittmann & Müller, 2007a, b) wurden an einer Stichprobe von sechs Förderschülern ohne Kontrollgruppe überprüft (Knorr, 2007). Das unseres Wissens einzige aktuelle Programm mit hinreichenden Effektivitätsbelegen ist das nicht im Handel erhältliche Programm "Merlins Rechenmühle" (Schoppek & Tullis, 2006, 2010), das ab der zweiten Jahrgangsstufe angewandt werden kann und sich schwerpunktmäßig mit Sachaufgaben und arithmetischen Aufgabenstellungen beschäftigt. Es wurde bereits in einer Reihe von Untersuchungen quasiexperimentell evaluiert und zeigte durchgängig positive Resultate.

Es liegt uns fern, bei dieser Aufstellung Anspruch auf Vollständigkeit zu erheben. Zusammenfassend kann man jedoch sagen, dass die Befundlage auf diesem Gebiet für den deutschsprachigen Bereich mehrheitlich ungenügend ist und sich die Suche nach geeigneten Programmen schwierig gestaltet - ein Aufwand, den viele Schulen scheuen (vgl. Biffi, 2002).


Überblick über "Rechenspiele mit Elfe und Mathis I"

Die vorliegende Studie soll helfen, die oben angesprochene Lücke im deutschen Bildungssektor zu schließen. Zu diesem Zweck möchten wir eine erste Evaluationsstudie eines von uns entwickelten Computerprogrammes vorstellen, nämlich der Lernsoftware Rechenspiele mit Elfe und Mathis I (W. Lenhard & A. Lenhard, 2010; im Folgenden Rechenspiele I genannt). Die Rechenspiele I orientieren sich an den nationalen Bildungsstandards der Kultusministerkonferenz für das Fach Mathematik in der Grundschule. Außerdem setzen sie wichtige lernpsychologische Ansprüche an computerbasierte Förderprogramme um. Sie wenden sich vor allem an Kinder der ersten drei Grundschulklassen, können aufgrund ihres adaptiven Charakters teilweise aber auch schon für vorschulische Förderung eingesetzt werden. Im Anschluss an eine Förderung mit den Rechenspielen I kann von der dritten bis etwa zur fünften Klasse mit den Rechenspielen mit Elfe und Mathis II (W. Lenhard, A. Lenhard & Lingel, 2010) gearbeitet werden. Im vorliegenden Artikel berichten wir allerdings ausschließlich die Ergebnisse einer ersten Evaluationsstudie zu den Rechenspielen I.

Die Rechenspiele I bestehen aus 17 verschiedenen Einzelspielen, die jeweils in drei verschiedenen Schwierigkeitsstufen existieren. Die Spiele verteilen sich inhaltlich auf die fünf Bereiche Mengen, Zahlen, Sachaufgaben, Bilder und Rechnen (siehe Tab. 1).



Tabelle 1
Tabellarischer Überblick über den Aufbau von Rechenspiele I. Die tatsächlich durchgeführten Inhalte hängen vom gewählten Lernprofil ab. So sind beispielsweise Aufgaben zur Division und Multiplikation in der ersten Klassenstufe deaktiviert.
Inhalts­bereich Inhalt Itempool Pro Durchlauf und Schwierigkeitsstufe dargebotene Aufgaben

Mengen

Mengenvergleich

1 405

15

Simultane Mengenerfassung

396

10

Zahlen zuordnen

1 680

10

Mengen aufteilen / zusammenführen

2 576

15

Zahlen

Zahleigenschaften

1 503

15

Relationen

1 490

15

Zahlen verbinden

104

8 bis 10

Zahlenstrahl

414

10

Sachaufgaben

Längenvergleich

1 342

15

Sachaufgaben

60

6

Metakognition

60

5

Bilder

Formen legen

118

10

Anzahl an Bausteinen

72

10

Rechnen

Addition

1 081

10

Subtraktion

1 119

10

Multiplikation

567

10

Division

520

10

Gesamt

17 Teilspiele

14 516


In den Spielen des Inhaltsbereichs Mengen wird trainiert, Mengen zu erfassen, zu vergleichen, aufzuteilen und zusammenzuführen und einer Menge die entsprechende arabische Ziffer zuzuordnen. Der Erwerb dieser Fertigkeiten stellt eine wichtige Voraussetzung für die mathematische Entwicklung in der Grundschule dar (Krajewski & Schneider, 2006).

Das Ziel des Inhaltsbereichs Zahlen ist es, eine abstrakte mentale Repräsentation von Zahlen auszubilden und zu festigen. So sollen Kinder beispielsweise lernen, dass Zahlen bestimmte Eigenschaften haben und zueinander in Relation stehen. Die Spiele dienen also dem Aufbau eines fortgeschrittenen, flexiblen Verständnisses des Zahlsystems, das über die reine Zählfunktion von Zahlen hinausgeht.

Der Bereich Sachaufgaben dient dazu, mathematische Fertigkeiten in quasirealistischen Szenarien anzuwenden. Die vielfältigen Anforderungen, die das Umsetzen von Texten in mathematische Situationsmodelle stellt, können dazu beitragen, das mathematische Verständnis entscheidend zu erweitern (Stern, 2003).

Im Inhaltsbereich Bilder werden Aufgaben dargeboten, die bildliches und räumliches Vorstellungsvermögen trainieren sollen (zur Trainierbarkeit visuell-räumlicher Fertigkeiten siehe auch Souvignier, 2001). Aktuelle Forschungsergebnisse belegen, dass das bildliche und räumliche Wahrnehmungs- und Vorstellungsvermögen eng mit mathematischen Fähigkeiten verknüpft ist (z. B. de Hevia & Spelke, 2009; Hubbard, Piazza, Pinel & Dehaene, 2005).

Der letzte Inhaltsbereich Rechnen dient der Einübung der vier Grundrechenarten. Deren Automatisierung reicht zwar alleine nicht zur Entwicklung eines tieferen Verständnisses für mathematische Konzepte aus, spielt aber in der Entwicklung mathematischer Kompetenzen im Grundschulalter eine wichtige Rolle (Mercer & Miller, 1992; van Luit & Naglieri, 1999).

Inwiefern eine spezielle Software zur Förderung mathematischer Inhalte geeignet ist, wird besonders von der Kombination aus geeigneten Förderinhalten, Rückmeldungsqualität und motivationsfördernden Elementen bestimmt (Leutner, 2006; Li & Ma, 2010). Wir haben deshalb bei der Entwicklung der Rechenspiele mit Elfe und Mathis versucht, einen möglichst hohen Anteil an Rückmeldung und motivierenden Elemente einzubauen, ohne dass durch diese Elemente die Konzentration auf das Wesentliche, nämlich das Üben von Mathematikaufgaben, verloren geht (Vermeidung des seductive detail effect und Reduktion von extraneous load; Harp & Mayer, 1997; Krajewski & Ennemoser, 2010; S. 344 ff.; Mayer, 2008; Rey & Nieding, 2010, S. 75 f.). Die Spiele sind in eine kleine Rahmenhandlung aus dem Elfenland eingebettet. Ein wichtiges motivierendes Element der Rahmenhandlung besteht darin, dass sich die beiden Titelfiguren zusammen mit dem Spieler auf die Suche nach dem Elfenschatz machen. Dieser kann allerdings erst erreicht werden, wenn alle Einzelspiele auf allen Schwierigkeitsstufen durchlaufen wurden, die für das Leistungsniveau des jeweiligen Spielers vorgesehen sind (siehe Abb. 1). Somit wird eine das Spiel überspannende Motivation erzeugt, bis zum Ende weiter zu spielen.


Abbildung 1

Abbildung 1. Überblick über den Ablauf des Trainings: Auf jeder Schwierigkeitsstufe gibt es insgesamt 17 Spiele zu den Inhaltsbereichen Mengen (M), Zahlen (Z), Sachaufgaben (S), Bilder (B) und Rechnen (R). Wurden alle Spiele einer Schwierigkeitsstufe bewältigt, so kann über das Labyrinth zum nächsten Schwierigkeitsgrad aufgestiegen werden. Am Ende wartet auf das Kind der große Elfenschatz.


Während der Aufgabenbearbeitung tritt die Rahmenhandlung komplett in den Hintergrund. Auf dem Bildschirm wird dabei jeweils nur eine einzelne Aufgabe ohne Klangeffekte und bewegte Bilder dargestellt. Außerdem ist der Bildschirm bei allen Spielen auf die gleiche Weise in einen Aufgaben- und einen Steuerbereich unterteilt (siehe Abb. 2). Somit kann die Aufmerksamkeit des Kindes voll auf die Aufgabenbearbeitung fokussiert werden.

Abbildung 2

Abbildung 2. Darstellung eines Teilspieles. Bei jedem Spiel befindet sich in der Leiste am rechten Rand der Steuerbereich mit den Verstärker- und Navigationselementen. Im Aufgabenbereich wird die Aufgabendarstellung präsentiert. Im diesem Beispiel besteht die Aufgabe darin, die Anzahl an Würfeln eines Modells zu erfassen.

Ob eine Aufgabe richtig oder falsch beantwortet wurde, wird jeweils direkt nach der Aufgabenbearbeitung durch ein akustisches Signal zurückgemeldet. Wurde eine Aufgabe zweimal falsch beantwortet, kann außerdem Hilfe bei der Lösung angefordert werden.

Wir haben im Spielablauf zwei verschiedene, voneinander relativ unabhängige Verstärkersysteme eingebaut. Erstens erhält ein Kind je nach Anteil der richtigen Lösungen pro Unterspiel bis zu 5 Elfentaler. Zweitens besteht ein Ziel darin, bei jedem Spiel eine vorab festgelegte Lösungsquote zu überschreiten. Der Spieler erhält dann nämlich zusätzlich ein Puzzleteil für eine Labyrinthkarte (siehe auch Abb. 1). Erst wenn alle Puzzleteile erworben wurden, gelangt das Kind zum großen Elfenschatz. Die Lösungsquote kann dabei je nach Leistungsstand des Kindes individuell konfiguriert werden. Somit können für jedes Kind hohe, aber gleichzeitig erreichbare Ziele gesetzt werden. Der Lernzuwachs wird dadurch maximiert (Locke & Latham, 1990).

Der Vorteil zweier voneinander getrennter Belohnungssysteme - Elfentaler und Puzzleteile - besteht darin, dass zwar einerseits ein Spiel, für das kein Puzzleteil erreicht wurde, wiederholt, d.h. stärker geübt werden muss. Andererseits kann auch ein leistungsschwaches Kind in diesem Spiel Belohnung in Form von Elfentalern erreichen. Der aktuelle Spielstand eines Kindes an Talern und Puzzleteilen kann jederzeit während des Spieles abgerufen werden. Zusätzlich lässt sich abfragen, welcher Prozentsatz an Aufgaben eines bestimmten Inhaltsbereiches bereits gelöst wurde.

Bevor ein Kind eine höhere Schwierigkeitsstufe erreicht, müssen alle Spiele des vorangegangenen Schwierigkeitsniveaus bewältigt worden sein. Die Abstufung stellt deshalb einen weiteren informationalen Verstärker dar, der dem Kind den eigenen Lernfortschritt signalisiert. Das Programm kann dabei individuell so konfiguriert werden, dass ein einzelner Spieler nur jene Spiele durchlaufen muss, die für sein Leistungsniveau und seinen aktuellen Lernfortschritt weder eine Über- noch eine Unterforderung darstellen.


Zielsetzung

Ziel der vorliegenden Untersuchung war der Nachweis, dass das computerbasierte Mathematik-Übungsprogramm Rechenspiele I in den ersten beiden Klassenstufen erfolgreich in den Mathematikunterricht integriert werden kann. Zu diesem Zweck wurde geprüft, ob Kinder, die mit den Rechenspielen I gefördert werden, bei gleicher investierter Lernzeit einen höheren Fortschritt erzielen als Kinder, die regulären schulischen Mathematikunterricht besuchen. Aufgrund des eingeschränkten Umfanges war es uns in dieser Untersuchung leider nicht möglich, die einzelnen Wirkmechanismen voneinander zu isolieren. Vielmehr sollte das generelle Vorhandensein positiver Effekte - und damit verbunden auch das Potential des Einsatzes von Lernsoftware in Unterricht und Förderung - aufgezeigt werden.




zurück weiter